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Three-state Potts model and anomalous tricritical points 

J P Straleyt§ and Michael E Fisher$ 
t Department of Physics Rutgers University, New Brunswick, New Jersey 08903, USA 
$ Baker Laboratory, Cornell University, Ithaca, New York 14850, USA 

Received 30 March 1973 

Abstract. Thirteen terms are presented of the low-temperature series for the free energy 
of the three-state Potts model in arbitrary external fields. Extrapolation of the series for 
specific heat, order parameter, and susceptibilities indicates that the transition in zero field 
is continuous (in contrast to the Landau prediction) with exponents a = a’ = 0.05k0.10, 
/? = 0~10~0.01,  y’ U 1.5k0.2 and y ;  = 1.1k0.1. These conclusions suggest the presence 
of an ‘anomalous’ tricritical point in the model ; the associated phase diagram is discussed 
and contrasted with the phenomenological predictions. 

1. Introduction and summary 

Some time ago Potts (1952) proposed a generalization of the standard king model in 
which each site of the lattice can be in one of q distinct states. Nearest-neighbour sites 
(in the simplest realization of the model) interact with energy q, if they are in the same 
state but with energy c l  if they are in different states. In the ‘ferromagnetic’ case one 
has c1 > c o .  Evidently the standard Ising model corresponds to q = 2. 

Potts studied the matrix approach and, for the case of the plane square lattice, 
discovered a duality transformation carrying low temperatures into high temperatures 
and vice versa. In later but apparently independent work Kihara et al(1954) discussed 
the same model and developed a graphical derivation of the duality relation. Some 
time ago one of the authors (MEF) derived a more general graphical analysis for an 
arbitrary planar lattice and more recently Mittag and Stephen (1971) have presented 
a detailed discussion using both topological and algebraic methods. By assuming, as is 
true for the king case (q  = 2), that there is only one transition temperature in the 
absence of external symmetry-breaking fields, Potts located the transition point, To, 
of the square lattice for general q as the fixed point of the duality transformation. 

In this work we will discuss the ferromagnetic model on the square lattice, specifically 
for the case q = 3 .  Let nk be the fraction of lattice sites in the kth state. In the thermo- 
dynamic limit the ordered state of the model is characterized by nonzero expectation 
for the densities 

6n, = n,-q-1 ,  

in the limit that appropriate symmetry-breaking fields are reduced to zero. In the case 
of odd q (in particular, q = 3) the an, are not symmetrical about zero, in the sense that 
positive and negative values (when meaningful) describe physically quite distinct 
configurations. It follows that, if one postulates a formal expansion of the free energy 
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near the transition point in powers of the 6nk, one must expect odd powers to occur. 
Thus according to  the well known phenomenological argument of Landau (1937) the 
zero-field phase transition is predicted to be of first order as a function of temperature 
(see appendix 1). In particular then, the Potts three-state model might be expected to 
exhibit behaviour similar to the somewhat related Zwanzig (1963) lattice model for 
liquid crystals. Indeed the usual mean field approximations, when applied to the 
q = 3 Potts model, do indicate such a discontinuous first order transition. The analysis 
is sketched in appendix 1. 

The Landau theory is, however, by no means unassailable. Even granting the 
possibility of the postulated Taylor series for the free energy (on which the method 
relies), the argument can fail if the cubic term ‘accidentally’ vanishes at the transition 
point. This might occur due to the intervention of some special, perhaps unsuspected 
or ‘hidden’ symmetry of the model. More generally we know that Taylor series expan- 
sions of the free energy about a transition point do not exist for most realistic symmetric 
models (Fisher 1967, Kadanoff et a1 1967), where the Landau theory always predicts 
a second order transition with classical exponents. There seem to be no good grounds 
for accepting a Taylor expansion in more general cases. 

In fact we strongly suspect that the Landau prediction does fail for the three-state 
Potts model on the square lattice. The appropriate exact series expansions, and their 
analysis which we report below, do not really support the expectation of a first order 
transition. On the contrary they can be consistently interpreted as describing a con- 
tinuous (or higher order) phase transition characterized by well defined critical point 
exponents a = U’, p, and 7’. The estimated values of these exponents, a ‘v 0.05, p ‘v 0.10, 
y’ = 1.5 f0.2, do  not indeed differ greatly from those for the square lattice Ising model. 
In addition, an exponent y; is introduced to describe the transverse fluctuations (eg of 
(nz - n l )  in a 3-rich phase), which also appear to diverge strongly at the zero-field transi- 
tion point (y ;  ‘v 1.1). 

It is illuminating to consider the consequences of this conclusion for the form of 
the full phase diagram of the model. To this end we introduce (for q = 3) three external 
fields c k  ( k  = 1,2,3) which couple to the distinct states by adding a term 

- N ( c l n l  +cZnZ+c3n3) (2) 

to the total energy expression for an N-site lattice. Since the model is clearly restricted 
by n , + n , + n ,  = 1, only the differences say, and c 2 - 1 3  are relevant to the 
thermodynamic properties. We may thus take c3 = 0. On the other hand symmetry 
is preserved if one retains all these fields but imposes the relation 

c l + c Z + c 3  = 0. (3) 

This in turn leads to a ‘triangle diagram’ for representing the phase space, (c l ,  iZ, C 3  ; T),  
of the model. 

Then, according to Landau theory or the mean field approximation, the transition 
point in zero field actually represents a quadruple point where four phases, namely 
1-rich, 2-rich, 3-rich and disordered can coexist, as illustrated in figure 1.  The quadruple 
point (marked q in the figure) is the meet of four triple point lines (marked 0,  1,2,3) and 
six coexistence surfaces on each of which two phases, for example 1-rich and 2-rich, 
or 2-rich and disordered, etc, can coexist. No abnormally large or ‘critical’ fluctuations 
in any variable would be expected in any of the phases in the vicinity of such a quadruple 
point. 
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7 Disordered 

Figure 1. Phase diagram of the three-state Potts model near zero fields according to the 
phenomenological Landau theory. The transition in zero field is a quadruple point marked 
q ,  at the meet of four triple point lines labelled 0, 1,2, and 3. Two of the four phases coexist 
on each surface. 

Conversely, the critical behaviour, which the evidence suggests characterizes the 
zero-field transition, rather indicates that the full phase diagram might be as sketched 
in figure 2. In this case the transition point in zero field is a tricritical point (marked t) 
formed by the join of three critical lines. Each line corresponds, in fact, to a q = 2 or 
Ising-like transition between the phases : (1-rich : 2-rich), (2-rich : 3-rich), and 
(3-rich : 1-rich), The more detailed arguments for this conclusion will be presented 
in 0 5 .  I t  is noteworthy, however, that a tricritical point such as this differs significantly 
from the tricritical points expected in other systems (Griffiths 1970, 1973). A typical 
or ‘normal’ tricritical point (depending on two fields i and i’) is illustrated in figure 3. 
By contrast with the ‘anomalous’ situation in figure 2, we note that one of the three 
critical lines is distinguished from the other two, which, in turn, bound two ‘wing-like’ 
coexistence surfaces w + and w -.  In particular, the distinguished or dominant critical 
line meets the other two lines tangentially and then ‘splits’. Thus one cannot draw a 
plane through the tricritical point so that all critical lines lie on one side (and are not 
tangent to  it). Such a plane can clearly be drawn through the anomalous tricritical 
point in figure 2. Among reasons for terming the Potts model tricritical point (if it really 
exists) ‘anomalous’ are, firstly, that such an arrangement of the critical lines cannot 
be produced naturally, in the phenomenological theory. Secondly that the composition 
triangle in the tricritical region necessarily exhibits unusual features, which will be 
explained below. 

Whether such anomalous tricritical points can or do exist in real physical systems 
remains to  be seen. At the present time, indeed, only few normal tricritical points have 
been subjected to  detailed experimental investigation. In any event, our analysis 
suggests that such transitions might occur in systems with threefold or close-to-threefold 
symmetry. 
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Figure 2. Phase diagram for the three-state Potts model indicated by the conclusion that 
the zero-field transition at To is a critical point, in fact, an ‘anomalous’ tricritical point. 
The limit lj  + - to yields a two-state or Ising model with critical temperature Ti’) and, 
similarly, for or c, + -to. 

‘1% 
Ttt 

‘% 
\ Critical Lines 

\ / 
‘\ t 

[ =  0 

4 

Figure 3. Appearance of a ‘normal’ tricritical point, labelled t, of the type discussed in 
Griffiths (1970, 1973). Here [ denotes the dominant ordering field while w +  and w -  label 
the ‘wings’ arising when the secondary field [’ is increased beyond its tricritical value [;. 

2. Low temperature expansions 

If N,,  denotes the number of bonds in a configuration of the model which join a site 
in state k to one in state I ,  then the total energy for a lattice of N sites can be written 

E = c 1 ( N I 2  + N , ,  + N 3 J  - i l N n ,  - i 2 N n 2 ,  (4) 

where we have exercised the freedom to set c3 = 0 and have, with no loss of generality, 
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taken c0 = 0. If we suppose C,, <, < 0, almost all sites will be in state 3 at low tempera- 
tures. Then an expansion of the partition function in powers of 

x = exp (s), Yl = .XP($). Y, = exp( &) 
may be obtained by considering configurations in which, successively, 0, 1,2,3, . . . sites 
are in the minority states 2 or 3. Thus one finds 

Z, = 1+N(y,  +y , )x4+2N(y~+y~)x6+4Ny ,y ,x7+ .  . . . ( 5 )  

In the zero-field case (y, = y, = 1) the expansion has been carried to order x16 

for general q by Kihara et a1 (1954). 
A general term of the expression of the partition function can be directly related 

to a set of graphs, which directly represent some configuration of minority sites. A 
typical graph is some polygon or group of disjoint polygons, possibly containing 
interior partitions separating regions of different types of minority sites. If the total 
perimeter of the graph is I ,  and the cluster contains mI 1-sites and m, 2-sites, then the 
graph is a contribution to the term x'yy1f12. We have constructed a list of all polygons 
of perimeter 13 or less, which gives all terms of third order in y, and y,, as well as some 
contributions from the more compact configurations of four, five,. . . minority sites. 
To generate the expansion of the partition function it is also necessary to calculate 
the number of ways each configuration can occur on the lattice. 

The expansion was generated for general q and zero field, as well as general fields 
for q = 3. The former series agrees with that of Kihara et al. Similarly, when y ,  (or y,) 
vanishes the latter expansion reduces to the known (Domb 1960) q = 2 (standard 
Ising) model expressions. 

The analysis to be presented below is restricted to q = 3, despite the fact that 
equivalent series for higher q are readily generated. It seems quite possible that a short 
series cannot be used to discuss large q, since the beginning terms of the series do not 
contain full information about the problem being discussed. For example, the first 
three terms of equation ( 5 )  describe a pair of independent Ising models, and only in the 
last term do the interactions between the minority sites play a role. 

From the series for the partition function one readily derives an expansion for the 
limiting free energy per site, namely, 

This expansion is presented in appendix 2. By differentiation with respect to x (or T )  
series for the internal energy and specific heat are obtained. These series are listed 
in appendix 2 for the limit of zero field (where the results follow directly from Kihara 
et al). 

Recalling that for (,, [, < 0 the system will be in the 3-rich phase, we define the 
spontaneous order parameter by 

Yo(T) = lim ($(n,)-+) 
51.52- 0 - 
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The normalization has been chosen so that Yo(0) = 1, The series expansion for Y o ( T )  
follows directly from that for F and is again tabulated in appendix 2. 

It is also fruitful to define two susceptibilities. The first of these, the longitudinal 
or parallel susceptibility is defined by 

( ( n l ) + ( n 2 ) )  = - 

On the line of symmetry i l  = c2  (implying ( n l )  = ( n 2 ) )  this is analogous to the 
standard susceptibility of, for example, a ferromagnet ; it measures the response of the 
order parameter to the field favouring ordering and is proportional to the fluctuations 
of the order parameter. In addition we define a transverse or perpendicular suscepti- 
bility 

which measures the ease with which one can alter the ratio of n ,  to n2 in the 3-rich 
phase (holding n3  constant). The series for x and xI in the zero-field limit (, = C 2  + 0-  
are included in appendix 2. 

3. Dual transformation 

Since the square lattice is self-dual the dual transformation provides an equation for 
the zero-field free energy which relates its value at a (say, low) temperature T to that 
at a dual (then, high) temperature T*. From Potts (1952) we find for the case q = 3, 

where 

1 - X( T*)  
x ( T )  = exp -- = = o(T*).  ( s) 1+2x(T*) 

These equations relate the high and low temperature expansions of the zero-field free 
energy, energy, and specific heat. In addition they can be used to generate approximate 
high temperature expressions from approximate low temperature expressions based, 
for example, on a summation of a subset of graphs. If there is a single transition point 
in zero field it must occur at a self-dual temperature, To, such that x(To) = u(To). This 
gives 

(12) 
We use the subscript ‘zero’ rather than ‘c’ in order to stress that a priori we do not know 
the character of this transition, that is, whether i t  is first order or continuous. The 
dual transformation does not yield that information. However, if the transition is 
continuous it follows (Kihara et al 1954) that the critical value of the energy per site is 

(13) 
Furthermore if the specific heat diverges at  the transition the singularity must be sym- 
metric, that is, we must have a’ = a or C - Ix-x0I-’  as x -, x o f .  

XO = x(T0) = 943- 1) = 0,366025.. . . 

€ ; ‘ U c  = ( 1  -J*) = 0.42264.. . . 
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The duality relation does not apply directly to the order parameter or the suscepti- 
bilities and correlations, although, as in the Ising case (Fisher and Ferdinand 1967, 
Fisher 1969), certain zero-field information concerning the correlation function does 
undergo transformations. We have not, however, explored or exploited such relations. 

4. Series analysis 

Owing to the relative shortness of our series as a function of the field variables (ie com- 
plete only to  third order in y ,  and y,) we have confined the present analysis to  the zero 
field series. It would, however, be very interesting to  obtain and study longer expansions 
in powers of y ,  and y ,  in order to  confirm the full field dependence and to  estimate the 
exponent 6, etc. 

The analysis we present is based entirely on the behaviour of the Pade approxi- 
mants to various series. Ratio techniques did not seem to be useful on account of the 
irregularity of the series. 

4.1. Energy and specific heat 

In the case of a continuous transition the internal energy U ( T )  is continuous but is 
expected to have a divergent derivative at the transition point To (which is then a 
'critical' point). Neither a truncated series expansion nor a direct Pade approximant 
can represent such behaviour properly and so they will not be considered. 

Direct Pade approximants to  the specific heat? yield poles in the vicinity of x = 0.38 
which is only a few per cent larger than the transition point value xo = 0.366. Series 
for the logarithmic derivative, (dldx) In (C(x), exhibit poles in a similar region with 
residues of about 0.6. This behaviour could be interpreted as indicating a first order 
transition, since if C - ( x - x , ( - " ~  with x1 > xo,  the specific heat would be bounded 
in the transition region xo.  The internal energy, calculated say by integrating C(x), 
will then undoubtedly be discontinuous through xo.  Previous experience, and the 
study of model functions, suggests however, that such behaviour could also be con- 
sistent with a weaker singularity (ci close to zero) at  the transition point itself. In that 
case the previous analysis is inadequate. Consequently, the series for dC/dx was con- 
structed and Pade analysed. Figure 4 shows how the poles of direct approximants 
to the series and to  its logarithmic derivatives are distributed. Note that in many cases 
the poles of the approximants lie below xo which, via duality, would imply two singu- 
larities as a function of T. We feel such a possibility can be safely discounted. Accord- 
ingly the analysis suggests that the specific heat diverges at xo with a close-to-logarithmic 
singularity. Clearly the available precision of an estimate of the exponent c( is not 
great, but, bearing in mind the trends of the residue-pole relation we conclude 

(14) 

Since the singularity is in any case quite close to  logarithmic we have constructed 
approximants for the specific heat by integrating the [4/4] and [5/6] direct Pade approxi- 
mants to dC/dx. The approximations for C(x) have logarithmic singularities at the 
poles of the parent approximant which, for these choices, are very close to xo (eg the 

t Here and below, references to the specific heat actually refer to the series expansion (in x) of the function 
k T 2 s ;  ' C .  

CI = CI' = 0.05 f 0.10. 
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[5/6] approximant has a pole at  x = 0.366007). Figure 5 compares the ‘integrated 
[5/6]’ approximation with the truncated series itself and with a direct Pade approximant 
to it. The dual transformation yields the appropriate high-temperature branch of the 
plot. 

XC I 
I / ,I 

0.371 
/ ’, ’ ’1 
I 

0.35 
- 0.2 -0.1 0 0.1 

a 

Figure 4. Summary of the analysis of the specific heat series. Shown are (a) the poles of 
Pad6 approximants to (d/dx) In(dC/dx) and corresponding residues interpreted as estimates 
for the exponent r; ( b )  the poles of approximants to (dC/dx), on the line c( = 0; and (c) the 
value at xo of approximants to the exponent function a*(x) = (x0-x)(d/dx) In(dC/dx)- 1, 
on the line x = x,,. The broken lines suggest the general trend of the z*(x) relation. 

0.3 0.35 Xo 0.4 
X 

Figure 5. Approximations and estimates for the specific heat; curve A the truncated series 
for C; curve B direct approximant to the series for C ;  curve C integral of the [5/6] approxi- 
mant to the series for (dC/dx) together with the complementary high temperature branch 
furnished by the dual transformation. Note the comparatively narrow range of the variable 
x relative to figure 6. 
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Now we may return to  the question of the continuity of the internal energy. The 
logarithmic approximations to  the specific heat C(x) were integrated numerically 
yielding the estimated behaviour of the internal energy displayed in figure 6. The dual 
transformation again provides the high-temperature branch. The approximation for 
U (  T )  is evidently almost continuous at  xo ; the apparent discontinuity is A U  N O.04Um,, . 
If we had calculated the approximation for U ( T )  on the assumption of a higher value 
of a, such as our central estimate 0.05, the magnitude of this numerical discontinuity 
would be further reduced. In view of the uncertainties in a, however, i t  does not seem 
worthwhile at  this stage to undertake more elaborate extrapolations. The evidence 
clearly suggests that U ( T )  is, in fact, continuous at To so that the three-component 
Potts model exhibits a continuous transition, or genuine critical point, with a specific 
heat which diverges weakly but, probably, somewhat more strongly than logarithmically. 

- 

- - 
- U0/€( - - 

I 

F - u m o x ' c ' - I  

X 

Figure 6. Approximations for the internal energy : curve A the truncated series for c' and 
its dual; curve B the double integral of the [5/6] Pade approximant to (dC,ldx) used for 
curve C in figure 5 ,  and the dual extension. Note the critical value of U fixed by duality 
for a continuous transition. 

4.2. Spontaneous order 

The truncated series for the zero-field or spontaneous order parameter Yo( T ) ,  defined 
in (7), has its first real positive zero at x = 0.47 which lies appreciably far beyond the 
transition point xo N 0.366. The value of the truncated series at xo is 0.856. However, 
even the direct Pade approximants to the series yield the lower transition point value 
of Y , ( T )  N 0.81 and closer zeros at x 2: 0.41. Each of these approximants has a pole 
very slightly beyond the zero at  x = 0.42 kO.01; such behaviour is often symptomatic of 
a nonanalytic zero lying closer to the origin. Accordingly it is appropriate to analyse 
the logarithmic derivative (dldx) In Yo(x). As is evident from table 1 all the higher 
order approximants exhibit poles in the range 0.363 to 0.366 with residues of 0.10 to 0.1 1. 
Discounting again the possibility of a transition lying below To this is strong evidence 
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Table 1. Analysis of order parameter series 

Pade approximants to (d/dx) In Y o  

Approximant Pole Residue Approximant Value 

Value at xo of approximants to 
(x,-xx)(d/dx) In Yo 

0.3645 
0.3635 
0.3635 
0.3649 
0.3645 
0.3635 
0.3636 
0.3636 
0.3657 
0.3635 

0.1014 1 ~ 3 1  0.1084 
0.0990 19/41 0.1055 
00990 18/51 0.13327 
0.1027 ~7161 0.14027 
0.1016 16/71 0.1059 
0.0992 
0.0992 ~ 4 1  0.1067 
0,0992 PI51 0.1014 
0.1048 
0.0990 

7 These approximants have a paired pole and zero near xo, and probably should be ignored. 

that Y,(T) vanishes continuously at To as at i! normal critical point. Granting this, 
estimates for the exponent /? may be found by ewluating approximants to the series for 

d 
dx P*(x) = (x - xo)- In 'Po(x) 

at  x = xo. These values lie between 0.100 and 0.106 for the higher order approximants. 
As a further check on the conclusion that Yo(T) vanishes like ( X - X , ) ~  with fi  'Y 0.1 

the series for 'PE, 'P:, and "Ao were constructed. Direct approximants to these series 
have simple zeros concentrated in the ranges x = 0.369 to 0.383, 0.366 to 0.370 and, 
with somewhat more scatter, 0.364 to 0.368, respectively. These results support the 
estimate 

P = 0.103+0.010. (16) 

Although the confidence limits could be over optimistic, the present evidence is not 
really consistent with the exponent value = &, which applies to the standard (q  = 2) 
Ising model. In view of the fundamentally different symmetry properties of the three- 
state model, this is hardly surprising. On the other hand, the low value of /? (relative to 
typical experimental values around f) undoubtedly reflects as expected, the two- 
dimensional character of the model. 

In summary the analysis of the order parameter expansions indicates strongly that 
the transition of the model is continuous with a well defined exponent /? close to & 
and very probably less than i. 

4.3. Susceptibilities 

The series for the susceptibilities seem to be less regularly behaved than those for C 
and Yo. Poles of the approximants to the logarithmic derivatives of x and xI lie in 
the range 0-32 to 0.37, suggesting again that the singularity is located at  xo.  Evaluation 
of the approximants to the exponent functions r'*(x) and y'r(x), defined in analogy to 
(13), yield the estimates exhibited in table 2. From these one might conclude 

7' = 1.5f0.1, 7; = 1.10f0.05. (17) 
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Table 2. Analysis of the susceptibility series 

Pade approximants to (d/dx) In(x-'kT~) 

Approximant Pole Residue Approximant Value 

Value at xo of approximants to 
(x - xo) (dldx) In(x - 4k T I )  

[5/31 0.3788 - 1.882 15/41 - 1.492 
14/41 0.3609 - 1.387 [4/51 - 1.331 
13/51 0.3654 - 1.503 [5/31 - 1.485 
13/41 0.3534 - 1.252 14/41 - 1.485 
14/31 0.3212 -0.785 13/51 - 1,695 
13/31 0.2995 -0.562 14/31 - 1.486 

Padt approximants to (d/dx) ln(x-"kT~J 

Approximant Pole Residue Approximant Value 

Value at xo of approximants to 
(x - x,)(d/dx) In(x-4kTX,) 

15/31 0.3609 - 1.002 15/41 - 1.094 
14/41 0.3 639 - 1.060 [ W I  - 1.095 
13/51 0.3639 - 1.060 [ W I  -1.110 

W41 0.3638 - 1.509 P/51 - 1.101 
14/31 0.3733 - 1.208 CWI - 1.086 

13/31 0.37 12 - 1.175 14/31 - 1.093 

However, the confidence limits here are probably subject to significant modification 
since the series are relatively short and, as mentioned, somewhat irregular. 

A check on these exponent estimates can be obtained by means of the Rushbrooke 
inequality (Rushbrooke 1963) 

Cc'+2P+y' > 2. (18) 

This can be proved on the basis of the convexity of the free energy (Fisher 1967) ; in 
the present case the necessary convexity is easily established for c l  = c2  si 0. According 
to theestimates (14), (16)and (17) the left hand side of(18) totals only 1.76f0.21 si 1.97. 
A similar difficulty was noted by Essam and Fisher (1963) in their analysis of the low 
temperature susceptibilities of the plane q = 2 Ising lattices. The shorter series, par- 
ticularly, on the honeycomb and square lattice, yielded estimates of y' lying 0.1 to 
0.2 below the rigorous lower bound y' = 1.75. Accordingly we believe that the estimates 
(17) for 7' and y; might be too low by a similar amount. Realistically, then, the con- 
fidence limits in (17) should probably be doubled in size. 

5. Nature of the phase diagram 

Our analysis of the zero-field series of the three-state Potts model has indicated rather 
strongly that the transition is continuous. If this is correct, it has some rather striking 
implications for the shape of the phase diagram in the full (c l ,  c 2 ,  l 3  ; T )  space (where 
the restriction (3) will now be utilized in order to  preserve the symmetry). 

To understand the phase diagram let us first suppose that one field, say c3, is large 
and negative. Then very few sites will be in state 3. Consequently the system will behave 
like a two-state or standard king model, with a few 'impurities', that is, sites in state 3. 
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Accordingly one expects to find, in this region of phase space, a planar coexistence 
surface, c l  = c2, bounded by a line of critical points. As c3 + - 00 the temperature 
on this line will approach Ti2),  the critical temperature of the square lattice Ising model. 
By symmetry, the situation for large negative c2  and c3 must be similar. Thus the 
appearance of the phase space will be as indicated in figure 7, where portions of the 
three coexistence surfaces and their critical lines are shown, 

,,,Cr;t&al I 
Disordered 

phase 

Critical 
line 

0 
8 

// 

2-rich phose 

Figure 7. Full phase diagram for the three-state model showing the behaviour that follows 
by considering the Ising-like limits (‘, , or c 2 ,  or c3 + -CO. 

In order to  complete the central region of the diagram we note that at low tempera- 
tures, the three distinct phases, 1-rich, 2-rich, and 3-rich, respectively, can coexist only 
at the point of symmetry c l  = c2 = c3 = 0. Thus at all temperatures below the sym- 
metric transition point To the three coexistence surfaces must continue until they meet 
in a triple point line; this is shown as a bold line in figure 2. Finally, if the zero-field 
transition is critical, in the sense of having divergent fluctuations, it is natural to  expect 
that it lies on the continuation of the three critical lines originating at the Ising model 
limits. The whole situation should thus be as illustrated in figure 2. Evidently the 
transition at To = TL3) is a tricritical point ; but, as observed in the introduction, its 
character is quite distinct from that of the tricritical points normally considered. (Com- 
pare again with the normal tricritical point illustrated in figure 3.) 

It is instructive to  draw the composition diagrams at various temperatures corre- 
sponding to this tricritical phase diagram. Figure 8 shows sample composition triangles : 
as usual the pure phases correspond to the appropriately labelled corners ; the tie lines 
on the diagrams indicate the two-phase regions ; the black dots denote the associated 
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A 

Figure 8. Composition diagrams for selected temperatures corresponding to the full phase 
diagram of figure 2. An anomalous tricritical point occurs at n, = n2 = n3 when 
T = To = TL3’. The tie lines reveal the two-phase regions; the stippling denotes a three- 
phase region. 

critical points (or plait points). In the low temperature diagram ( T  < To) the three- 
phase region, corresponding to c l  = (, = c3 = 0, is marked by stippling; any mixture 
with a composition lying in this triangle, will break up into domains of the three phases 
corresponding to the corners of the triangle. A somewhat unusual feature of the diagram 
is the three pointed coexistence curves which arise just at  the tricritical transition point 
T = To = TL3); correspondingly as T -+ To+, the coexistence curves will become 
increasingly pointed. 

As noted in the introduction, the phenomenological theory and the mean field 
approximations predict that the transition at To is a quadruple point q at which an 
equicomposition or disordered phase, coexists with three asymmetric phases each 
rich in one of the three states. The corresponding local region of the phase diagram was 
illustrated in figure 1. The associated behaviour of the full phase diagram is sketched 
in figure 9. Evidently the three web-like surfaces wl, w 2 ,  and w 3 ,  which now join the 
original coexistence surfaces c l  = c,, l2 = c 3 ,  and c l  = c,, extend to  form the ‘wings’ 
of three new tricritical points (labelled t,, t,, and t3). These three tricritical points are, 
however, of the orthodox type shown in figure 3. 

The composition diagrams for To < T < TL2) now exhibit appreciably more com- 
plicated behaviour as evident in figure 10. A special role is played not only by the 
tricritical temperature T, (equal, by symmetry for t, , t ,  and t3 )  but also by the otherwise 
undistinguished temperature, T , ,  which is the minimum critical temperature. This 
corresponds to the lowest points on the web surfaces w l ,  w 2  and w 3  in figure 9. In the 
interval To < T < T, four distinct phases appear in the composition triangle ; however, 
no more than three of these can coexist at  the same time. (The three-phase regions are 
again stippled.) Below To and in the region near and above T a ) ,  the composition 
diagrams have the same character as before. The full sequence of composition diagrams 
for the phenomenological theory can thus be obtained by replacing the two triangles 
in figure 8 labelled T 2 To and T = To = TL3), by the sequence of four in figure 10. 

Although, to our knowledge, there are no real systems displaying composition 
diagrams with the full symmetry of figure 10, three-component fluid systems do  exist 
(Roozeboom 1913) which show a number of the topological features displayed-in 
particular the merging of coexistence curves at a minimum critical point and the 
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existence of enclosed three-phase regions. I t  would be interesting to try to mimic the 
three-state Potts model more closely in the laboratory to  see which type of phase 
diagram would be realized. 

\ 
-. 

i ? 
3-rich 

Figure 9. Full phase diagram for the three-state model following from the phenomeno- 
logical and mean field theories (compare with figure 1). The three tricritical points are 
labelled t , ,  t, and t,;  the zero-field transition is the quadruple point labelled q ;  the lowest 
critical points occur on the boundaries of the ‘webs’ or ‘wings’ w l ,  w 2 ,  and w 3 ,  at a tempera- 
ture T,. 

Figure 10. Composition diagrams for various temperatures in the range To < T < IT; for 
the phenomenological phase diagram of figure 9. Tie lines indicate the two-phase regions 
while stippling denotes the three-phase regions. 
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Appendix 1. Classical theory of the three-state Potts model 

Following Landau (1937) we expand the canonical free energy A(n, , n , ,  n3,  T )  about 
the symmetry axis n ,  = n ,  = n3 = 3 .  Accordingly we introduce the deviations 

mk = n k - f ,  k = 1,2 ,3  ('4.1) 

which are subject to 

m , + m , + m 3  = 0. 

In view of the symmetry of A under all interchanges, m j  ++ mk and the condition (A.2), 
the expansion to fourth order must have the form 

A = ~ , ( ~ ) + r ~ m ~ + t ' m , m , m , + u  E m :  +.. . .  (A.3) 

Thus other cubic terms, such as zj+km;mk, are simply proportional to m1m2m3. As 
usual the coefficients r ,  U, and U are presumed to vary analytically with T .  I t  is now 
evident that if U = 0, the free energy expression has rotational symmetry and would 
be appropriate, say, for describing an X Y or 'planar' ferromagnet. As r passes through 
zero a classical second-order transition occurs. Thus to describe the threefold symmetry 
of the Potts model one must either have U # 0 or else sixth-order and higher terms must 
play a crucial role in the expansion. We will take t' > 0 with no loss of generality. 

i l 2  

To analyse (A.3) it is convenient to put 

M = )J3m1, Q = %m2-m3)9 t" = 2 x 3 - 3/2t., 64.4) 

A = A ,  + r ( M 2  + Q2) - t ' 'M(MZ - 3QZ) + u ( M 2  + Q')' +. . . 
which lead to 

( '4 .5 )  

in which M and Q are independent orthogonal variables. When r = 0 it is easy to  see 
that A has three symmetrically placed minima lying on the lines M = 0, +,/3Q. For 
negative r these minima merely increase in depth and move further out from the origin. 
The composition triangle, found by taking the convex envelope or double tangents, 
of the A surface is clearly of the form indicated in figure 8 for T < To. 

As r becomes positive, a metastable minimum appears at the origin M = Q = 0. 
The locations of the three remaining minima may, by symmetry, be found from the 
equation for A with Q = 0. One finds the minima exist provided r < r l  = 9d2/32u 
and that they always lie further than M = 3v' /8u from the origin. However, for 
r = r ,  = d2/4u < r l  , these minima become higher than the one at the origin. Accord- 
ingly in zero field for r > r ,  the stable state shifts discontinuously to M = Q = 0 or 
mk = 0, rk = 4 (all k). This identifies the transition at  r(To) = ro  as a quadruple point 
where a first order jump of magnitude AM = u " / ~ u  omurs from a disordered state 
to one of the three symmetric k-rich states. 
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The behaviour away from the centre of the composition triangle now follows by 
considerations of continuity, and by plotting the contours of constant A in the ( M ,  Q) 
plane and using the double tangent construction. For example the minimum critical 
points occur at  M ,  = d /4u  when r(T,) = r ,  = 3d2/8u. In this way the form of figures 
9 and 10 may be elucidated. 

Appendix 2. Free energy series for general q 

There are q - 1 different minority species, and q - 1 corresponding independent fields. 
The free energy series is a symmetric function of the q -  1 variables y i .  The series is 
given here in an unsymmetrized form, with the convention that each term represents 
all the terms that can be generated from it by assignment of the subscripts. The sub- 
scripts have been suppressed. Thus y" means y: + y; +. . . +y;-  1 ,  and (for q = 4 )  yy 
becomes y1y2 +y1y3 +y2y1 +y2y3 +y3y ,  +y3y2, with each product represented twice. 
Then the low-temperature expansion for the free energy is 

1 
kT - - F ( l 1 9 l 2 , . . 9 ;  T )  

= yx4 + 2y2x6 + 2yyx7 + { y4 + 6y3 - gy2 + yy)}x* + 12y2yx9 

+ {2y6+8y5  + 1 8 ~ 4 + 4 ~ 3 ~ + 6 ( ~ 2 ~ + ~ ~ ~ ) + 2 ~ 2 ~ 2 -  16(y3 +y2y) }x '0  

+ {8y4y+40y3y+ 14y2y2 +4y2yy- 1 6 ( 2 ~ 2 ~ + ~ ~ ~ ) } ~ 1 1  

+ { y 9  + 6y8 + 22y7 + 40y6 + 55y5 + 8y5y + 24y4y + 4y4y2 + 24y3y2 

+ 28(Y3Y +Y2YY) + 26(Y2Y2 +Y2YY) + (Y2Y2 + 2Y2YY +YYYY) 

- 23(y4 + y2y2)  - 12(y5 + y4y) - 62(y4 + y3y)  + %y3 + 3y2y + yyy))x" 

+ { 20y6y + 68y5y + 132y4y + 4(y3y + 3y2yy + yyyy) + 24y4y2 

+ 8(y4y + y3yy)  + 24(y3y2 + y3yy)  + 88y3y2 + 16(y3y2 + y2y2y) 

+ 14(y2y2 + 3y2yy + yyyy) + 6y3y3 + 16y2y2y +4y4yy 

+ 1 6 ~ 3 ~ ~ - 4 6 ( 2 ~ 3 ~ + ~ 2 ~ ~ ) -  1 2 4 ( ~ ~ y + y ~ y ~ + y ~ ~ ~ ~ ) } ~ ~ ~ + .  . . . 
This form may be specialized to q = 3 by putting y, = y, = 0. 

The series that may be derived from this expression are 

1 
kT 

c F,x" = --F(0; T ) ;  

d 1  
dx( kT ) c U,X" = x- --F(0; T )  , 

which is the low temperature expansion for (1 / c1 )U ;  

d d  1 
dx dx( kT ) ~ C , X "  = X-X- - - F  , 

which is the expression for c;'kT2C; and the series expressions for Yo (equation (7)), 
kTX (equation (8)), and kTX, (equation (9)). The coefficients of these series are given in 
table 3. 
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Table 3. Coefficients of series expansions of various functions 

X0 0 
x4 2 
X6 4 
x7 4 
X8 4 
x9 24 
X1 O 16 
X 1  60 
X I 2  172: 
x1 3 128 
X l 4  840 
X I 5  1180 
X I 6  2576 

0 
8 
24 
28 
32 
216 
160 
660 
2072 
1664 
11760 
17700 
41216 

0 1 0 0 
32 -3 2 2 
144 - 12 16 16 
196 - 12 16 0 
2 56 - 36 100 120 
1944 -108 216 24 
1600 -210 844 844 

24864 -1746 7844 5924 

164640 

659456 

7260 -480 1552 400 

21632 -2340 12112 4448 

From Kihara et al(1954) 
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